
Microservices and DevOps

DevOps and Container Technology
Docker Swarm

Henrik Bærbak Christensen



Docker Swarm

• ” A swarm consists of multiple Docker hosts which run in 

swarm mode and act as managers (to manage 

membership and delegation) and workers (which run 

swarm services).”

– Swarm manager:

• You can execute docker commands

– Worker:

• Slaves that can only accept services from the manager

• Node: Physical or virtual machine

– In production, a physical machine makes most sense, but in the 

cloud, well…

CS@AU Henrik Bærbak Christensen 2



Service and Task

• Service = the definition of a task to execute

– That is, a running container

– The ‘services:’ section of the docker-compose file

• Replicated service

– A service can be replicated, that is you define how many 

instances of it to run

• Task

– ‘container + commands to run it’

– assigned to a node; will never leave it

Imhotep Henrik Bærbak Christensen 3



Cluster Creation

• On my ESXi hypervisor, I created

– Headless Ubuntu 18.04 LTS machines

• Malkia00 and three Nyuki’es (queen and bees ☺)

– ‘docker swarm init’ Creates a join token

– 3 x ‘docker swarm join’ Using the join token

CS@AU Henrik Bærbak Christensen 4



Small Cluster Creation

• In our context, Swarm is very approachable as a swarm 

may consist of a single node.

• Just ‘swarm init’ in Mxx, and you can test run all your 

work, just as if it was on a multi-node swarm

• (Of course, RAM and CPU are limiting factors…)

CS@AU Henrik Bærbak Christensen 5



SideNote

• Swarm nodes talk through static IP addresses

– I.e. they need these to be fixed

• On my home router in my Corona Bubble lab I found that 

I could assign static DHCP leases to swarm nodes

CS@AU Henrik Bærbak Christensen 6



Stack

• You can manipulate services directly using docker engine 

commands

– That is – manual interaction 

• Infrastructure-as-code

– Automate through scripting

• Stack: Group of interrelated services that share 

dependencies, and are orchestrated and scaled together.

• Compose-file: IaC for defining how containers behave in 

production. Writting in a specific YAML format.

CS@AU Henrik Bærbak Christensen 7



Anatomy of Compose-file

• A typical Compose-file

– YAML file

– Hierarchy by indentation

• (use spaces!!!)

• (be aware of whitespace)

– State

• Services to deploy

• Networks to create

• (Volumes to create)

• …

CS@AU Henrik Bærbak Christensen 8



Anatomy of Compose-file

• Service definition

– Docker image that holds task

• Only docker hub images

(or in local image cache)

– Properties

• Ports to expose

• Network to use

• (Volume to use)

• Etc.

CS@AU Henrik Bærbak Christensen 9



Anatomy of Compose-file

• Instructing the service/task

– Command: 

• Overrules CMD in image

– Depends_on:

• States service dependencies

and order of service starts

• But swarm does not respect ‘is-up’ by services even if 

there is a depends_on

– If the ‘db’ is slow to start, the client service may try to connect 

before it will accept connections 
CS@AU Henrik Bærbak Christensen 10

Only ‘image:’ tag 
possible in stacks



Orchestration

• Services need to communicate with each other...

• Each container on the network is assigned the 

‘service name’ as hostname

– A swarm has its own DNS

– There will be a node

named ‘db’ and one named ‘web’

on this network!

• So, you have to configure

your ‘manage.py’ to connect

to ‘db:5432’ (postgres port).

CS@AU Henrik Bærbak Christensen 11



Anatomy of Compose-file

• Format 3.x of compose-file allows deployment to be 

specified!

Here:
5 instances,

limit use of CPU and 
mem

(max 10% cpu/50MB),
and set restart policy

CS@AU Henrik Bærbak Christensen 12



Five Instances???

• The default network of swarm is a ingress routing mesh:

CS@AU Henrik Bærbak Christensen 13



“Load Balancing”

• Ingress routing mesh: Each node in swarm accepts 

connections on published ports for any service in the 

swarm

CS@AU Henrik Bærbak Christensen 14



Example

• My Telemedical application is on my malkia swarm:

• But can upload measurements on any node in swarm

CS@AU Henrik Bærbak Christensen 15



SideBar

• We will talk more about horizontal scaling and load 

balancing later…

CS@AU Henrik Bærbak Christensen 16



Routing

– ”The swarm makes the service accessible at the target port on 

every swarm node. If an external host connects to that port on 

any swarm node, the routing mesh routes it to a task. The 

external host does not need to know the IP addresses or 

internally-used ports of the service tasks to interact with the 

service. When a user or process connects to a service, any

worker node running a service task may respond.”

• Note: It states ‘swarm load balancer’ on the previous 

figure, but – it is not round-robin ☺. It “routes incoming 

requests to published ports on available nodes.”

– Which may be hitting the same node again and again…

• If it is not working too hard…
CS@AU Henrik Bærbak Christensen 17



Peer Bech’s Thesis

• Peer’s Master Thesis (2020)

– 10 AWS nodes in swarm, having 40 REST containers, and hitting 

the cluster with JMeter generated traffic… 

• Looks like the swarm does a

pretty good job at distributing

load…

CS@AU Henrik Bærbak Christensen 18



Stack Manipulation

• Docker commands for manipulating a stack:

– ‘docker stack deploy –c (composefile) (stackname)’

– ‘docker stack ls’ List running stacks

– ‘docker stack ps (n) List tasks in stack ‘n’

– ‘docker stack services (n)’ List services in ‘n’

– ‘docker stack rm (n)’ Remove stack ‘n’

• Only works on a manager node

CS@AU Henrik Bærbak Christensen 19

Tech note: deploy with ‘--with-registry-auth’ if your image is 
only available in a private repository...



Service Manipulation

• ‘stack deploy’ starts services in the swarm, so

– ‘docker service ls’ Shows running services

– ‘docker service ps (name)’ Shows ‘ps’ status of service

– ‘docker service logs (name)’ Shows logs for all replicas of

given name

• (provide the –f to ‘logs’ to follow/tail the log output)

CS@AU Henrik Bærbak Christensen 20



Example

• I made a full SkyCave system (Stack ‘dilab’)

– Subscription service with associated MongoDB, 2x SkyCave 

daemons with shared Memcached db and a Docker visualizer

CS@AU Henrik Bærbak Christensen 21



Deployment

• One node has

– More RAM

– More Disk

• ‘type=database’

• I can state that

the MongoDB

must be deployed

on such a node.

CS@AU Henrik Bærbak Christensen 22



Constraints

• Wire the DB to the right VM

CS@AU Henrik Bærbak Christensen 23



And Visually

CS@AU Henrik Bærbak Christensen 24



Updating the Stack

• Two central operations

– I need to adjust the stack’s configuration

• Edit the compose/stack file

• Issue the ‘docker stack deploy’ again

• Easy for stateless services

– For instance change the replication factor of ‘daemon’

• Not so easy for statefull services

– Do not move a db service away from its volume ☺

» Solution: Use architecture for that – redundancy!

– I need to do maintenance of node X

• Docker node drain X

CS@AU Henrik Bærbak Christensen 25



Drain

• Need to do stuff

on nyuki02

CS@AU Henrik Bærbak Christensen 26



Drain

• Service now deployed on malkia00

CS@AU Henrik Bærbak Christensen 27



Back to work

CS@AU Henrik Bærbak Christensen 28



Updating the Stack

• Old services actually hang around

– To allow rollback

– (But I am not aware of efficient prune command…)

CS@AU Henrik Bærbak Christensen 29



Persistence

• An ordinary docker container can mount specific folders 

on the host’s file system

• Ex:

– Mongo stores data in folder /data/db, so

– -v ~/my-mongo-folder:/data/db

– Will ensure that this folder is mounted as ~/my-mongo-folder on 

the host machine

• But – swarm services may be redeployed?!?

CS@AU Henrik Bærbak Christensen 30



Persistence

• Solution: Use ‘named volumes’

CS@AU Henrik Bærbak Christensen 31



Example:

• From the compose file of the ‘cavereg.baerbak.com’ 

subscription service

CS@AU Henrik Bærbak Christensen 32



Secrets

• Secret = Blob of data

– Passwords, keystore files, certificates, you name it

– Ex: ‘docker secret create baerbak.jks /home/secret/baerbak.jks’

• Once created, is distributed using TLS to all nodes

– i.e. all nodes in swarm have proper access

• A service must be given access to a secret

– ‘secrets:’ section in compose file

CS@AU Henrik Bærbak Christensen 33



Compose?

• It is swarm and stacks and services

– Why is it then called a ‘compose file’

• Docker compose was a precursor to swarm

– And still maintained… You need to install ‘docker-compose’

– Main difference to swarm

• Runs ONLY on a single node (all services deployed locally)

• ‘image: ..’ entry could be replace by ‘build: …’

– So compose-files could refer to local Dockerfiles and include the build 

step…

CS@AU Henrik Bærbak Christensen 34



Summary

• Infrastructure-as-code:

– Finally, full production architecture is codified!

• The terminology layering

– Service

• A single container running in ‘docker-engine’

– Docker-compose

• Sets of containers deployed on single docker-engine

– Swarm

• A set of docker-engines clustered in a network

– Stack

• A set of services deployed on a swarm

Imhotep Henrik Bærbak Christensen 35



Appendix

Setting up the Swarm



Init

CS@AU Henrik Bærbak Christensen 37



Status

• Overview

• Setting type

CS@AU Henrik Bærbak Christensen 38



TestRun

• Run subscription service with MongoDB on ‘database’ 

node

CS@AU Henrik Bærbak Christensen 39


