/v

AARHUS UNIVERSITET

Microservices and DevOps

DevOps and Container Technology
Docker Swarm

Henrik Baerbak Christensen

eV Docker Swarm

AARHUS UNIVERSITET
* 7 A swarm consists of multiple Docker hosts which run in
swarm mode and act as managers (to manage
membership and delegation) and workers (which run
swarm services).”

— Swarm manager:
* You can execute docker commands

— Worker:
« Slaves that can only accept services from the manager
* Node: Physical or virtual machine

— In production, a physical machine makes most sense, but in the
cloud, well...

/v Service and Task

AARHUS UNIVERSITET

« Service = the definition of a task to execute
— That is, a running container
— The ‘services:’ section of the docker-compose file

* Replicated service

— A service can be replicated, that is you define how many
iInstances of it to run

 Task

— ‘container + commands to run it’
— assigned to a node; will never leave it

V4V Cluster Creation

AARHUS UNIVERSITET

* On my ESXI hypervisor, | created

— Headless Ubuntu 18.04 LTS machines
« MalkiaO0 and three Nyuki'es (queen and bees ©)

— ‘docker swarm init’ Creates a join token
— 3 x ‘docker swarm join’ Using the join token

MANAGER STATUS

Leader

V4V Small Cluster Creation

AARHUS UNIVERSITET
* In our context, Swarm is very approachable as a swarm

may consist of a single node.

e Just ‘swarm init’ in Mxx, and you can test run all your
work, just as if it was on a multi-node swarm

« (Of course, RAM and CPU are limiting factors...)

/v SideNote

AARHUS UNIVERSITET

« Swarm nodes talk through static IP addresses
— |l.e. they need these to be fixed

* On my home router in my Corona Bubble lab | found that
| could assign static DHCP leases to swarm nodes

J DHCF

Statiske DHCP leases

Ponomdir\gering‘ DNS ‘ UPnP ‘DynDNS‘ DMz ‘ NTP ‘ IPvE

Veelg en IP adresse til enheden.

A 192.168.1.40 4CED:FB:68:10:59
Enhed Statisk IP adresse MAC adresse
TheVortex 192.168.1.41 00:11:32:89:B4.E2 o
malkial0 192.168.1.50 00:0C:29:17:0D:FF (]
nyukiO1 192.168.1.51 00:0C:29:39:86:04 o
nyuki02 192.168.1.52 00:0C:29:BF-A9:1F [i]
nyuki03 192.168.1.53 00:0C:29:44:32.ED 1]

VeV Stack

AARHUS UNIVERSITET
* You can manipulate services directly using docker engine

e Coding infrastructure logic: The programming of logic

Commands for the deployment of services. Traditionally han-

. ; . dled by manual procedures (installing, configuring,
- That IS — manual Interaction @ and linking services), but in face of large-scale deploy-

ments, this too must be coded. Example: Develop-

o Infrastru Cture-aS-COde ing scripts that start the application server, inventory
service and associated database, initialize them, and
— Automate through Scrlptlng connect them correctly—i.e. create a staging environ-

ment.

« Stack: Group of interrelated services that share
dependencies, and are orchestrated and scaled together.

« Compose-file: 1aC for defining how containers behave in
production. Writting in a specific YAML format.

..l\
Oris it a ‘stack file’? Shooting a
_ _ moving target ®
CS@AU Henrik Baerbak Christensen 7

/v Anatomy of Compose-file

AARHUS UNIVERSITET
« Atypical Compose-file

replace username/repo:tag with your name and image details

_ YAM L file ;;Z%iule rname/repo:tag

replicas: 5

— Hierarchy by indentation

condition: on-failure

« (use spaces!!!)

cpus: "@.1"

- (be aware of whitespace) =i
— State
* Services to deploy

image: dockersamples/wisualizer:stable

* Networks to create ports:

Tooon . 2aan"
uuuuuuuuu

i (VOlumeS tO Create) ﬁ- "i:‘-,"-L||-.,":I:-:\-e'.5:-:\':,"-.-a',"'L|n,":|:-:<9'.5:-:\'"

° = como .
e placement:
constraints: [node.role == manager]

CS@AU Henrik Baerbak Christensen 8

/v Anatomy of Compose-file

AARHUS UNIVERSITET
« Service definition

replace username/repo:tag with your name and image details

version: "3

— Docker image that holds task .

replicas: 5

« Only docker hub images s -

condition: on-failure
(or in local image cache) e
cpus: "@.1"

. ports: .
— Properties
« Ports to expose T
image: dockersamples/visualizer:stable
* Network to use ports: p

(VOIume to use) volumes:

- "fvar/run/docker.sock: /var/run/docker.sock”

deploy:
® EtC- placement:

constraints: [node.role == manager]
networks:
- webnet
networks :

webnet:

CS@AU Henrik Baerbak Christensen 9

/v Anatomy of Compose-file
AARHUS UNIVERSITET
Only ‘image:’ tag
— Command: . possible in stacks
« Overrules CMD in image R pmi/
— Depends_on: 'Ew<
and order of service starts e
erende o

 Instructing the serviceftask
« States service dependencies e python mansge.py runserver 0.0.0.0:5000
ports:
- dh

» But swarm does not respect ‘is-up’ by services even if
there i1s a depends_on

— If the ‘db’ is slow to start, the client service may try to connect
before it will accept connections ®
CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET
 Services need to communicate with each other...

« Each container on the network is assigned the
‘service name’ as hostname

Orchestration

— Aswarm has its own DNS version: '3
— There will be a node e
named ‘db’ and one named ‘web’ imege: postares
on this network! it
| iziz:;:: python manage.py runserver @.@.0.08:3600
~« So, you have to configure pres
your ‘manage.py’ to connect derfe;:s_cr¥=
- to 'db:5432’ (postgres port).

/v

AARHUS UNIVERSITET

Anatomy of Compose-file

* Format 3.x of compose-file allows deployment to be

specified!

Here:
5 instances,
limit use of CPU and

mem
(max 10% cpu/50MB),
and set restart policy

CS@AU

version: "3"
services:
web:
replace username/repo:tag with your name and image details
image: username/repo:tag
deploy:
replicas: 5
restart_policy:
condition: on-failure
resources:
limits:
cpus: "@.1"

memory: 58M
ports:
- "B@:sa”
networks:
- webnet
visualizer:
image: dockersamples/visualizer:stable
ports:
- "Base:sesa”
volumes:
- "fvar/run/docker.sock:/var/run/docker.sock”
deploy:
placement:
constraints: [node.role == manager]
networks:
- webnet
networks:

Henrik Baerbak C ™ebnet: 12

/v Five Instances???

AARHUS UNIVERSITET
« The default network of swarm is a ingress routing mesh:

networks:
- webnet
networks:

webnet:

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

 Ingress routing mesh: Each node in swarm accepts
connections on published ports for any service in the

swarm

CS@AU

192.168.99.100:8080
my-web published port

“Load Balancing”

192.168.99.101:8080
my-web published port

192.168.99.102:8080
my-web published port

swarm
load
ba I ancer
..:.':w.-.-.-:::.':.'
10.0.0.1:80
my-web. 1 e

192.16899.100

swarm
load
balancer
annnntt ¥
................ AP TLLL aammnnt '-.:.'...-.‘-

10.0.0.2:80
my-web.2 node?2

192.168.99.101

swarm
load
balancer

aE
. e

.

node3
192.168.99.102

ingress network

Henrik Baerbak Christensen

14

/v Example

AARHUS UNIVERSITET
* My Telemedical application is on my malkia swarm:

csdevi@ml:~/proj/broker/telemed$ gradle homeHttp -Pid=pid@l -Psys=127 -Pdia=77 -Ph@at:malhia.st.lab.au.dkl

« Butcan upload measurements on any node in swarm

csdevi@ml:~/proj/broker/telemed$ gradle homeHttp -Pid=pid@1 -Psys=127 -Pdia=79 -Phost=nyuki®l.st.lab.au.dk

CS@AU Henrik Baerbak Christensen 15

VeV SideBar

AARHUS UNIVERSITET

« We will talk more about horizontal scaling and load
balancing later...

CS@AU Henrik Baerbak Christensen

16

/v Routing

AARHUS UNIVERSITET

— "The swarm makes the service accessible at the target port on
every swarm node. If an external host connects to that port on
any swarm node, the routing mesh routes it to a task. The
external host does not need to know the IP addresses or
Internally-used ports of the service tasks to interact with the
service. When a user or process connects to a service, any
worker node running a service task may respond.”

* Note: It states ‘swarm load balancer’ on the previous
figure, but — it is not round-robin ©. It “routes incoming
requests to published ports on available nodes.”

— Which may be hitting the same node again and again...
« If it is not working too hard...

/v Peer Bech’s Thesis

AARHUS UNIVERSITET

* Peer’s Master Thesis (2020)

— 10 AWS nodes in swarm, having 40 REST containers, and hitting
the cluster with JMeter generated traffic...

 Looks like the swarm does a
pretty good job at distributing
load...

CS@AU Henrik Beerbak Christensen 18

Y Stack Manipulation

AARHUS UNIVERSITET
 Docker commands for manipulating a stack:

— ‘docker stack deploy —c (composefile) (stackname)’

— ‘docker stack Is’ List running stacks
— ‘docker stack ps (n) List tasks in stack ‘n’
— ‘docker stack services (n)’ List services in ‘n’

— ‘docker stack rm (n)’ Remove stack ‘n’

* Only works on a manager node

Tech note: deploy with ‘--with-registry-auth’ if your image is

only available in a private repository...

CS@AU Henrik Baerbak Christensen 19

/v Service Manipulation

AARHUS UNIVERSITET
« ‘stack deploy’ starts services in the swarm, so
— ‘docker service Is’ Shows running services
— ‘docker service ps (hname)’ Shows ‘ps’ status of service
— ‘docker service logs (name)’ Shows logs for all replicas of

given name
 (provide the —f to ‘logs’ to follow/tail the log output)

Y Example

AARHUS UNIVERSITET

* | made a full SkyCave system (Stack ‘dilab’)

— Subscription service with associated MongoDB, 2x SkyCave
daemons with shared Memcached db and a Docker visualizer

/v

AARHUS UNIVERSITET

« One node has
— More RAM

— More Disk
* ‘type=database’

* | can state that
the MongoDB
must be deployed
on such a node.

CS@AU

Deployment

/v

AARHUS UNIVERSITET
* Wire the DB to the right VM

—— MongoDBE used by subscription server
mongodb :

image: mongo:3.2.5

Constraints

networks:
— backend

Fix the deployment so data is persisted (disabled to allow =asy restart)
volumes:

- mongo-data:/data/dy

deploy:
placement:
NOTE: only works if 'docker node update --label-add type=database (node)'
F Nhas been 1s5sued by Lhe manager!
constraints: [node.labels.type == database]

y works if 'docker node update --label-add type=datal > (node)’

as been issued by the manager!
constraints:
CS@AU - node.labels.type == datal

\ 4
AARHUS UNIVERSITET

From Containers to Container = X @ docker drain at DuckDuckGo

And Visually

Digital Innovation 2019

&« C o ‘ @ hyuki01.st.dient.au.dk4567/info

¥ Most Visited @ Getting Started

SkyCave Daemon HTTP Server

Statistics

Requests handled during life time: 3
Last Request:
null
Last Reply:
null
This node has IPs:

e 1721803
+ 10.255.031
* 10.0.44
+ 10.03.7
* 127.0.0.1

Credits

SkyCave designed and implemented by Henrik Baerbak Christensen ..

CS@AU

Login

Login Name

Password

Henrik Baerbak Christensen

Registration

Login Name (login id)
Player Name (name in the cave)
Password Repeat Password

Group (just provide something :-)

Region: City near you

24

/v Updating the Stack

AARHUS UNIVERSITET

« Two central operations

— I need to adjust the stack’s configuration
« Edit the compose/stack file
* Issue the ‘docker stack deploy’ again

« Easy for stateless services
— For instance change the replication factor of ‘daemon’

* Not so easy for statefull services
— Do not move a db service away from its volume ©
» Solution: Use architecture for that — redundancy!

— | need to do maintenance of node X
 Docker node drain X

eV Drain

AARHUS UNIVERSITET

Need to do stuff
on nyuki02

CS@AU Henrik Baerbak Christensen 26

eV Drain

AARHUS UNIVERSITET
« Service now deployed on malkiaO0

® malkia00
manager
0.963G RAM

CS@AU Henrik Baerbak Christensen 27

S k to work

AARHUS UNIVERSITET

® malkiaO(
manager
0.963G RAM

docker node update —-—-availability active

docker node update ——-availability drain

docker node update —-—-availability active nyukil

msdo_cavedb

msdo_daemon msdo_daemon

msdo_daemon

/v Updating the Stack

AARHUS UNIVERSITET

« Old services actually hang around
— To allow rollback

— (But I am not aware of efficient prune command...)

CS@AU Henrik Baerbak Christensen 29

eV Persistence

AARHUS UNIVERSITET

* An ordinary docker container can mount specific folders
on the host’s file system

« EX:
— Mongo stores data in folder /data/db, so
— -v ~/my-mongo-folder:/data/db

— Will ensure that this folder is mounted as ~/my-mongo-folder on
the host machine

« But — swarm services may be redeployed?!?

/v

AARHUS UNIVERSITET

 Solution: Use ‘named volumes’
VOLUMES FOR SERVICES, SWARMS, AND STACK FILES

Persistence

When working with services, swarms, and docker-stack.yml files, keep in mind that
the tasks (containers) backing a service can be deployed on any node in a swarm,
and this may be a different node each time the service is updated.

In the absence of having named volumes with specified sources, Docker creates an
anonymous volume for each task backing a service. Anonymous volumes do not
persist after the associated containers are removed.

» |If you want your data to persist, use a named volume and a volume driver that is
multi-host aware, so that the data is accessible from any node. Or, set constraints on
the service so that its tasks are deployed on a node that has the volume present.

CS@AU Henrik Baerbak Christensen 31

/v Example:

AARHUS UNIVERSITET

* From the compose file of the ‘cavereg.baerbak.com’

subscription service

--- MongoDB used by subscription server
mongodhb:
image: mongo:3.2.5

networks:
- network-subscription

Fix the deployment so data is persisted
» volumes:
- mongo-data-subscription:/data/db

deploy:
placement:
» constraints: [node.role == manager]

CS@AU Henrik Baerbak Christensen

32

VeV Secrets

AARHUS UNIVERSITET

« Secret = Blob of data
— Passwords, keystore files, certificates, you name it
— Ex: ‘docker secret create baerbak.jks /nome/secret/baerbak.jks’

« Once created, is distributed using TLS to all nodes
— l.e. all nodes in swarm have proper access

« A service must be given access to a secret
— ‘secrets:’ section in compose file

/v Compose?

AARHUS UNIVERSITET

* |ti1s swarm and stacks and services
— Why is it then called a ‘compose file’

 Docker compose was a precursor to swarm
— And still maintained... You need to install ‘docker-compose’
— Main difference to swarm

* Runs ONLY on a single node (all services deployed locally)

* ‘image: .. entry could be replace by ‘build: ...’

— So compose-files could refer to local Dockerfiles and include the build
step...

/v Summary

AARHUS UNIVERSITET

 Infrastructure-as-code:
— Finally, full production architecture is codified!

« The terminology layering
— Service
* A ssingle container running in ‘docker-engine’
— Docker-compose
« Sets of containers deployed on single docker-engine
— Swarm
« A set of docker-engines clustered in a network
— Stack
« A set of services deployed on a swarm

/v

AARHUS UNIVERSITET

Appendix

Setting up the Swarm

docker swarm ini
Swarm initialized: current node (rrolSSeu3lfll84mlsvic4r3n)

To add a worker to this swarm, run the following command:

docker swarm join —--token SWMITEN-1-3ompfS5&2ad4Twk

CS@AU Henrik Baerbak Christensen 37

eV Status

AARHUS UNIVERSITET
« Qverview

ER hbc@malkiall: ~ - O

-5 docker node

% docker node update —-label-add tyr & e nyukid3

CS@AU Henrik Beerbak Christensen 38

eV TestRun

AARHUS UNIVERSITET

* Run subscription service with MongoDB on ‘database’
node

DESIRED STA

Running

bak/private:subscription-v100 Eunning

hbclmalkia

CS@AU Henrik Beerbak Christensen 39

